Year 10 Strand 3 Foundation

Topic/Skill	Definition/Tips	Example
1. Change the	Use inverse operations on both sides of the	Make x the subject of $y = mx + c$
subject of a	formula (balancing method) until you find the	
formula	expression for the letter.	Subtract c from both sides
(rearrange a		y-c=mx
formula)		Divide both sides by m
		$\frac{y-c}{}=x$
		m We now have x as the subject.
		·
2. Linear	A number pattern with a common difference	2, 5, 8, 11 is a linear sequence
Sequence	(same number is added or subtracted	
	between consecutive terms).	
3. Term-to-term	A rule which allows you to find the next term	First term is 2. Term-to-term rule is 'add 3'
rule	in a sequence if you know the previous term .	
		Sequence is: 2, 5, 8, 11
4. Finding the nth	A rule which allows you to calculate the term	nth term is 3n - 1
term of a linear	that is in the nth position of the sequence.	The 100th term is $3 \times 100 - 1 = 299$
sequence	(Also known as the 'position-to-term' rule.)	
		Find the nth term of: 3, 7, 11, 15
	n refers to the position of a term in a	1. Difference is +4
	sequence.	2. Start with $4n$
		$3.4 \times 1 = 4$, so we need to subtract 1 to
		get 3.
5. Fibonacci type	A sequence where the next number is found	The Fibonacci sequence:
sequences	by adding up the previous two terms	1,1,2,3,5,8,13,21,34
		An averagle of a Fibernoosi tura converse.
		An example of a Fibonacci-type sequence: 4, 7, 11, 18, 29
6. Geometric	A sequence of numbers where each term is	An example of a geometric sequence:
Sequence	found by multiplying the previous one by a	2, 10, 50, 250
	number called the common ratio, r .	The common ratio is 5
		Another geometric sequence:
		80, -40, 20, -10, 5
		The common ratio is -0.5
7. Midpoint of a	Method 1: add the x coordinates and divide	Find the midpoint between (2,1) and (6,9)
Line	by 2, add the y coordinates and divide by 2	
		$\frac{2+6}{2} = 4$ and $\frac{1+9}{2} = 5$
	Method 2: Sketch the line and find the values	2 2
	half way between the two x and two y values.	So, the midpoint is (4,5)
8. Linear Graph	Straight line graph.	Example:
o. Linear Graph	0	Other
	The general equation of a linear graph is	examples:
	y = mx + c	x = y
		y = 4
	where m is the gradient and c is the y-	x = -2
	intercept.	y = 2x - 7
		y + x = 10
		2y - 4x = 12
		5

Year 10 Strand 3 Foundation

9. Gradient	The gradient of a line is how steep it is.	Gradient = $4/2 = 2$
	Gradient = $\frac{Change\ in\ y}{Change\ in\ x} = \frac{Rise}{Run}$	Gradient = -3/1 =-3
	The gradient can be positive (sloping	-3
	upwards) or negative (sloping downwards)	2
		<u>0</u> 0 1 2 3 4 3 6 7 8 3 16
10. Parallel Lines	If two lines are parallel , they will have the	Are the lines $y = 3x - 1$ and $2y - 6x + 1$
	same gradient. The value of m will be the	10 = 0 parallel?
	same for both lines.	Rearrange the second equation in to the form $y = mx + c$
		$\int \int \int \int \int \int \partial u du du du du du du du $
		$2y - 6x + 10 = 0 \rightarrow y = 3x - 5$
		Since the two gradients are equal (3), the
		lines are parallel.
11. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
	$ax^2 + bx + c$	$8x^2 - 3x + 7$
	ux + bx + c	$3\lambda - 3\lambda + 1$
	where a, b and c are numbers, $a \neq 0$	
12. Factorising	When a quadratic expression is in the form	$x^2 + 2x - 8 = (x+4)(x-2)$
Quadratics	$x^2 + bx + c$ find the two numbers that add	(because +4 and -2 add to give +2 and
	to give b and multiply to give c.	multiply to give -8)
13. Difference of	An expression of the form a^2-b^2 can be	$x^2 - 25 = (x+5)(x-5)$
Two Squares	factorised to give $(a + b)(a - b)$	$16x^2 - 81 = (4x + 9)(4x - 9)$
14. Solving Quadratics by	Factorise the quadratic in the usual way. Solve = 0	Solve $x^2 + 3x - 10 = 0$
Factorising	Solve - 0	Factorise: $(x + 5)(x - 2) = 0$
(a=1)	Make sure the equation = 0 before	x = -5 or x = 2
	factorising.	
15. Quadratic	A 'U-shaped' curve called a parabola.	y ↑ y = x²-4x-5
Graph	The equation is of the form	
	$y = ax^2 + bx + c$, where a, b and c are	
	numbers, $a \neq 0$. If $a < 0$, the parabola is upside down .	-1 /5 x
	in $a < 0$, the parabola is upside down.	
		(2, -9)
16. Roots of a Quadratic	A root is a solution .	4
	The roots of a quadratic are the x -intercepts	2
	of the quadratic graph.	
		2 /1 1 2 3 4
		2
		4
		\

Year 10 Strand 3 Foundation

17. Turning Point of a Quadratic	A turning point is the point where a quadratic turns .	
	On a positive parabola , the turning point is called a minimum . On a negative parabola , the turning point is called a maximum .	
18. Inequality	An inequality says that two values are not equal. $a \ne b$ means that a is not equal to b. $x > 2$ means x is greater than 2 $x < 3$ means x is less than 3 $x \ge 1$ means x is greater than or equal to 1	State the integers that satisfy $-2 < x \le 4$.
19. Inequalities on a Number Line	$x \le 6$ means x is less than or equal to 6 Inequalities can be shown on a number line. Open circles are used for numbers that are less than or greater than $(< or >)$ Closed circles are used for numbers that are less than or equal or greater than or equal $(\le or \ge)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
20. Simultaneous Equations	A set of two or more equations, each involving two or more variables (letters). The solutions to simultaneous equations satisfy both/all of the equations.	$2x + y = 7$ $3x - y = 8$ Add the two equations: $5x = 15$ $x = 3$ Substitute into one of the equations to find y: $2 \times 3 + y = 7$ $y = 1$ So $x = 3, y = 1$
21. Solving Simultaneous Equations (Graphically)	Draw the graphs of the two equations. The solutions will be where the lines meet. The solution can be written as a coordinate.	y = 5 - x and y = 2x - 1. They meet at the point with coordinates (2,3) so the answer is $x = 2$ and $y = 3$