Year 9 Strand 4

Topic/Skill	Definition/Tips	Example
Solving	1. Balance the coefficients of one of the	5x + 2y = 9
Simultaneous	variables.	10x + 3y = 16
Equations (by	2. Eliminate this variable by adding or	Multiply the first equation by 2.
Elimination)	subtracting the equations (Same Sign	
	Subtract, Different Sign Add)	10x + 4y = 18
	3. Solve the linear equation you get using	10x + 3y = 16
	the other variable.	Same Sign Subtract (+10x on both)
	4. Substitute the value you found back into	y - z
	one of the previous equations.	Substitute $x = 2$ in to equation
	5. Solve the equation you get.	Substitute $y = 2$ in to equation.
	6. Check that the two values you get	$5r + 2 \times 2 = 9$
	satisfy both of the original equations	$3x + 2 \times 2 = 3$ $x = 1$
	sansty born of the original equations.	~ -
		Solution: $x = 1, y = 2$
Solving	1. Rearrange one of the equations into the	y - 2x = 3
Simultaneous	form $y = \dots$ or $x = \dots$	3x + 4y = 1
Equations (by	2. Substitute the right-hand side of the	
Substitution)	rearranged equation into the other	Rearrange: $y - 2x = 3 \rightarrow y = 2x + 3$
	equation.	
	3. Expand and solve this equation.	Substitute: $3x + 4(2x + 3) = 1$
	4. Substitute the value into the $y =$ or	
	$x = \dots$ equation.	Solve: $3x + 8x + 12 = 1$
	5. Check that the two values you get	11x = -11
	satisfy both of the original equations.	x = -1
		Substitute: $y = 2 \times -1 + 3$
		v = 1
		,
		Solution: $x = -1, y = 1$
Quadratic Graph	A 'U-shaped' curve called a parabola.	$y \uparrow y = x^2 - 4x - 5$
	The equation is of the form	
	$y = ax^2 + bx + c$, where a , b and c are	
	numbers, $a \neq 0$.	-1 5 x
	If $a < 0$, the parabola is upside down .	
		(2, -9)
Roots of a	A root is a solution .	4
Quadratic		2
	The roots of a quadratic are the x-	
	intercepts of the quadratic graph.	
Probability	The likelihood/chance of something	
	happening	
		Impossible Unlikely Even Chance Likely Certain
	Is expressed as a number between O	
	(impossible) and 1 (certain).	
		1-in-6 Chance 4-in-5 Chance
	Can be expressed as a fraction decimal	
	percentage or in words (likely unlikely	
	even chance etc.)	

Year 9 Strand 4

Probability Notation	P(A) refers to the probability that event A will occur.	P(Red Queen) refers to the probability of picking a Red Queen from a pack of
		cards.
Theoretical	Number of Favourable Outcomes	Probability of rolling a 4 on a fair 6-
Probability	Total Number of Possible Outcomes	sided die = $\frac{1}{6}$.
Relative	Number of Successful Trials	A coin is flipped 50 times and lands on
Frequency	Total Number of Trials	Tails 29 times.
		The relative frequency of getting Tails = $\frac{29}{50}$.
Expected	To find the number of expected outcomes,	The probability that a football team wins
Outcomes	multiply the probability by the number of	is 0.2 How many games would you expect
	trials.	them to win out of 40?
		$0.2 \times 40 = 8 games$
Tree Diagrams	Tree diagrams show all the possible	Dag A Dag D
	outcomes of an event and calculate their	- red
	probabilities.	$\frac{1}{red}$
	All branches must add up to 1 when	5 2 black
	adding downwards	< ³ 1
	This is because the probability of	4 3 red
	something not happening is 1 minus the	5 black
	probability that it does happen.	$\frac{2}{3}$ black
	Multiply going across a tree diagram.	5
	Add going down a tree diagram.	
Independent	The outcome of a previous event does not	An example of independent events could
Events	influence/affect the outcome of a second	be <u>replacing</u> a counter in a bag after
	event.	picking it.
Dependent	The outcome of a previous event does	An example of dependent events could
Events	influence/affect the outcome of a second	be not replacing a counter in a bag atter
	event.	'Without replacement'
Venn Diagrams	A Venn Diagram shows the relationship	
· · · · · · · · · · · · · · · · · · ·	between a group of different things and	A B A B
	how they overlap.	
	You may be asked to shade Venn Diagrams as	
	shown below and to the right.	$(A \cap B)' \qquad (A \cup B)'$
		A B A B
Venn Diagram	∈ means ' element of a set ' (a value in the	Set A is the even numbers less than 10.
ινοτατιοή	SEI) {} means the collection of values in the set	n = {c, 4, 0, 0}
	{ } means the conection of values in the set.	

Year 9 Strand 4	
ξ means the ' universal set ' (all the values to consider in the question)	Set B is the prime numbers less than 10. B = {2, 3, 5, 7}
A' means 'not in set A' (called complement) A \cup B means 'A or B or both' (called Union) A \cap B means 'A and B (called Intersection)	A ∪ B = {2, 3, 4, 5, 6, 7, 8} A ∩ B = {2}