Year 9 Strand 5

Topic/Skill	Definition/Tips	Example
		N
Pythagoras' Theorem	For any right angled triangle : $a^2 + b^2 = c^2$ a b Used to find missing lengths . a and b are the shorter sides, c is the	Finding a Shorter Side y I0 SUBTRACT: 8 $a = y, b = 8, c = 10$ $a^{2} = c^{2} - b^{2}$ $y^{2} = 100 - 64$ $y^{2} = 36$ $y = 6$
	hypotenuse (longest side).	
3D Pythagoras' Theorem	Find missing lengths by identifying right angled triangles.You will often have to find a missing length you are not asked for before finding the missing length you are asked for.	Can a pencil that is 20cm long fit in a pencil tin with dimensions 12cm, 13cm and 9cm? The pencil tin is in the shape of a cuboid. Hypotenuse of the base = $\sqrt{12^2 + 13^2} = 17.7$
		Diagonal of cuboid = $\sqrt{17.7^2 + 9^2}$ = 19.8 <i>cm</i> No, the pencil cannot fit.
Trigonometry	The study of triangles .	
Hypotenuse	The longest side of a right-angled triangle . Is always opposite the right angle .	hypotenuse
Adjacent	Next to	P e)
Trigonometric Formulae	Use SOHCAHTOA. $\sin \theta = \frac{0}{H}$ $\cos \theta = \frac{A}{H}$	x

Year 9 S	itrand 5	
	$\tan \theta = \frac{\theta}{A}$ $\int_{S} \frac{\theta}{H} + \frac{\theta}{C} + \frac{\theta}{T} + \frac{\theta}{T}$ When finding a missing angle, use the 'inverse' trigonometric function by pressing the 'shift' button on the calculator.	$\tan 35 = \frac{x}{11}$ $x = 11 \tan 35 = 7.70 cm$ $x = 11 \tan 35 = 7.70 cm$ $x = \frac{7 cm}{5 cm}$ Use 'Adjacent' and 'Hypotenuse', so use 'cos' $\cos x = \frac{5}{7}$ $x = \cos^{-1}\left(\frac{5}{7}\right) = 44.4^{\circ}$
Proof	Logical mathematical arguments used to show that a statement is true.	
Demonstration	An example which shows that either a statement can be true or that shows that a statement can't be true.	The product of two whole numbers is always an odd number. 3 x 4 = 12 We have demonstrated that this is not always true.
Odds and Evens	An even number is a multiple of 2 An odd number is an integer which is not a multiple of 2.	If n is an integer (whole number): An even number can be represented by 2n or 2m etc. An odd number can be represented by 2n-1 or 2n+1 or 2m+1 etc.
Consecutive Integers	Whole numbers that follow each other in order.	If n is an integer: n , n+1 , n+2 etc. are consecutive integers.
Square Terms	A term that is produced by multiply another term by itself.	If n is an integer: n^2 , m^2 etc. are square integers
Sum	The sum of two or more numbers is the value you get when you add them together.	The sum of 4 and 6 is 10
Product	The product of two or more numbers is the value you get when you multiply them together.	The product of 4 and 6 is 24
Multiple	To show that an expression is a multiple of a number, you need to show that you can factor out the number .	$4n^2 + 8n - 12$ is a multiple of 4 because it can be written as:

Year 9 Strand 5		
	$4(n^2+2n-3)$	