Year 11 - Module 10 Higher

Topic/Skill	Definition/Tips	Example	
Area Under a Curve	To find the area under a curve, so into simpler shapes — such as retriangles and trapeziums — that at the area.	plit it up so the sectangles,	7
Tangent to a Curve	A straight line that touches a cure exactly one point.	rve at y Tangent line	*
Gradient of a Curve	The gradient of a curve at a point same as the gradient of the tang point. 1. Draw a tangent carefully at the 2. Make a right-angled triangle. 3. Use the measurements on the calculate the rise and run (chang change in x) 4. Calculate the gradient.	gent at that e point. axes to the in y and $Gradient = \frac{Change in y}{C}$	
		Gradient = $\frac{5}{Change in x}$ = $\frac{16}{2}$ = 8	

Year 11 - Module 10 Higher

Rate of	The rate of change at a particular instant in	70
Change	time is represented by the gradient of the	60
	tangent to the curve at that point.	€
	tungent to the cur ve at that point.	(u) 40 log 30 Positive rate
		Positive rate
		of change
		0
		0 2 4 6 8 Time (s)
		70
		Negative rate
		© 40 of change
		(E) 40 of change
		20
		10
		0 2 4 6 8
		Time (s)
Distance-Time	You can find the speed from the gradient	4
Graphs	of the line (Distance ÷ Time)	Distance (Km) 3
1	The steeper the line, the quicker the speed.	
	A horizontal line means the object is not	
	moving (stationary).	1
	moving (stationary).	0 0 1 2 3 4 5 6 7 8 9 10
		Time (Hours)
Velocity-Time	You can find the acceleration from the	4
Graphs	gradient of the line (Change in Velocity ÷	Velocity (m/s) 2
	Time)	2
	The steeper the line, the quicker the	
	acceleration.	'//
	A horizontal line represents no	0 7 9 1 2 3 4 5 6 7 8 0 10
	acceleration, meaning a constant velocity.	Time (Seconds)
	a constant (crosity)	
	The area under the graph is the distance .	
	The area under the graph is the distance.	