Year 11 - Module 7 Higher

Topic/Skill	Definition/Tips	Example
Direct proportion	As one thing increases, the other thing increases. e.g. As speed increases, the distance increases for the same amount of time $y \propto x$	The graph is always a straight line $y = kx$
Inverse proportion	As one thing increases, the other thing decreases. e.g. if it takes 3 men, 8 days to build a wall, how long will it take 6 men to build a similar wall. $y \propto \frac{1}{x}$	The graph is a curve $y = \frac{k}{x}$
Arc of a circle	A part of the circumference	Arc length = $\frac{Circumference}{360} \times angle$
Area of sector	A part of the area of the circle	Sector = $\frac{Area\ of\ circle}{360} \times angle$
Angles in a semi-circle have a right angle at the circumference.		$y = 90^{\circ}$ $x = 180 - 90 - 38 = 52^{\circ}$
Opposite angles in a cyclic quadrilateral, add up to 180°.	Cylic quadrilatersl is a quadrilateral formed by connecting 4 points on the circumference to each other.	$x = 180 - 83 = 97^{\circ}$ $y = 180 - 92 = 88^{\circ}$
The angle at the centre is twice the angle at the circumference.	2a	$x = 104 \div 2 = 52^{\circ}$

Year 11 - Module 7 Higher

Same segment theorem	Angles in the same segment are equal. Points must be connected to the circumference	$x = 42^{\circ}$ $y = 31^{\circ}$
A tangent meets a radius at a right angle		y = 5cm (Pythagoras' Theorem)
Tangents from an external point are equal in length.		$x = 90^{\circ}$
Alternate Segment Theorem		$x = 52^{\circ}$ $y = 38^{\circ}$
Equation of a circle	$y^2 + x^2 = r^2$ Where r is the radius of the circle and the centre is at (0,0)	$x^2 + y^2 = r^2$ $P(x, y)$