Year 8 Computer Science	Unit	Substantive Knowledge	Disciplinary Aim	Cultural Capital
Term 1 HT 1	Python Next Steps	Know how to create flowcharts and pseudocode Know how to effectively use loops, IF, ELIF and ELSE Understand the use of loops Know how to write and call procedures	 Use IF, ELIF and ELSE to respond accordingly based on the conditions that has been met Write, call and send values to procedures Use a loop to repeat segments of code or until a condition has been met Store data in lists, adding and removing as required. Assessment: Students will be given 4 programming challenges that will allow them to showcase their ability to program the taught techniques. 	 Key words: print, input, data type, string, integer, variable, assignment, selection, list, loop, for loop, while loop, procedure. Extra-curricular: The Raspberry Pi website and code club website contain a number of python tutorials for students to extend their knowledge with independently.
Term 1 HT 2	Understanding Computers	Know the difference between hardware and software Understand the role of the central processing unit, random access memory and the need for secondary storage Know that data is stored as binary values and how to convert binary into denary numbers	 Investigate the hardware and software elements of our school computers Explore and compare secondary storage devices Using a diagram locate components on a computers motherboard Convert binary to denary and denary to binary Explore ASCII character sets Assessment: Students will complete a quiz on the topics	 Key words: hardware, software, input, process, output, computer system, cpu, ram, hard drive, hard disk, SSD, binary, denary, motherboard, ASCii, character set. Extra-curricular: Explore online shopping sites like PC world to compare the RAM and CPU's of different devices.
Term 2 HT 1	Control Systems	Understand the uses of a flowchart Know how to produce a flowchart using the start/stop, output, process and decision symbols Know the characteristics of a control system	 covered in this unit of work. Break a system down into smaller parts and represent in a flowchart Produce flowcharts for on screen control systems and for third party implementation Make use of subroutines Use the decision symbol for multiple events in a flowchart Assessment: Students will produce a flowchart for a given mimic to show the flow of data through a system using range of flowchart symbols.	 Key words: Control System, Mimic, Flowcharts, Input, Output, Process, Decision, Subroutine. Extra-curricular: Grab a stopwatch and a pen to monitor a set of traffic lights in the community. Use the information you collect to produce your own flowchart of the traffic lights – perhaps ask a friend/relative to then test it! iDEA Bronze Award: Colours (10)

Term 2 HT 2	Microbit	Understand the purpose of the Micro:bit and what it can do Understand the importance of breaking problems down (abstraction and decomposition) Know how to program the micro bit buttons and LED's using a range of programing concepts	 Use selection and loops in different programming languages Create an image and display on the micro bit Create a guess the number game Explain an event handler Use the micro bits accelerometer Assessment: Students will be given 4 programming challenges that will allow them to showcase their ability to program the taught techniques.	 Key words: Selection, loop, IF ELSE IF, ELIF, forever, repeat, variable, assignment, pseudocode, event handler, emulator, repetition, computational thinking, abstraction, decomposition. Extra-curricular: The micro bit website includes an online emulator and a range of step by step tutorials to build on the learning from class
Term 3 HT 1	Game Design	Know that computer games have backgrounds and objectsUnderstand how to give game objects 'events and 'actions'Know how to add multiple actions to single eventsKnow how to publish content to Google Play	 Use the events editor to add multiple actions Add a scoring system to a game including a high score Program a game to respond to conditions Create multiple frames (levels) that link together Use variables when working with brick health Assessment: Students will produce a game and export and test on an Android device via Google Play 	 Key words: Object, Action, Event, Variable, Repeat, Forever. Extra-curricular: CTF 2.5 is a free piece of software limited to three frames and a number of tutorials for building games can be found on the CTF website and YouTube.
Term 3 HT 2	Networks	Understand the difference between a local area network and a wide area network Know the hardware used to network computers including topologies Know the need of IP addressing Understand the need for encryption	 List the main components of a school network Explain the role of some network components Identify three different network topologies Describe the internet and how data is distributed through data packets Explain how IP addresses are used to identify our location on the internet Describe the significance of bandwidth and buffering Explain why some of the data which should be kept secure and how data might be encrypted Demonstrate applying a simple encryption Assessment: Students will answer a series of exam questions based on the topics covered in this unit of work.	Key words: Network, Local Area Network, Wide Area Network, internet, data packet, ip address, router, switch, desktop, wireless access point, encryption. Extra-curricular: Using a free online tool compare the bandwidth of your internet connection to your friends and family. Does a fibre service make any difference to this?